Do tangible interfaces enhance learning?

Paul Marshall, Open University

Existing work on tangibles

- Lots of technical development and design work
- Descriptive frameworks
- Link with embodiment
- Collaboration
Learning with tangibles

• Need for empirically-grounded frameworks
• Need to know:
 – What are the cognitive and social effects of tangibles
 – Whether and why they might promote learning
 – What features of tangibles might be important to learning (and which are incidental)
 – What domains should they be used in

‘Framework’ on tangibles and learning

• Review of the literature on tangibles and in cognitive science, psychology and education
• Six themes:
 – Possible learning benefits
 – Typical learning domains
 – Type of learning activity
 – Integration of representations
 – Concreteness and sensori-directness
 – Effects of physicality
• Aims to highlight trends in work on tangibles, link to related research and point to directions for future work
Possible learning benefits

- Learning benefits of physical manipulation
 - Embodiment
 - Piagetian psychology
 - Physical manipulatives
- Collaboration
 - Shared space
 - Gaze/gesture monitoring
 - Increased awareness of others’ activity
 - Situated learning
 - Concurrent interaction
 - but see Stanton & Neale, 2003
 - Manipulation of objects outside interactive space

Possible learning benefits

- Accessibility
 - Young children
 - People with disabilities
 - Novices
- Novelty of links
- Playful learning

- Promising, but little empirical validation
- Q: is there something specific about tangible interfaces that leads to these learning benefits?
Typical learning domains

- Variety of learning domains supported by tangibles
- Some repeatedly seen
 - Narrative
 - Molecular biology/chemistry
 - Dynamic systems
 - Programming
- These domains tend to be inherently spatial
 - Literally (e.g. molecules)
 - Metaphorically
- In 2D spatial representations, what does tangibility provide?

Types of learning activity

- What kinds of activity might be supported by tangibles?
- Mellar and Bliss: learning with scientific models
- Exploratory learning
 - Investigating a model created by a domain expert
 - Learning through discovery and cognitive conflict
 - Why tangibles?
 - If more intuitive or natural interaction
 - Maximum attention on learning domain, rather than system
 - If effects of physical interation
 - Extra or different info might be gained
Types of learning activity

• Expressive learning
 – Learners create an external representation of a domain
 • cf. constructionist learning (Papert, 1980)
 – Includes system generated representations
 • E.g. logs of user activity
 • Working with external representations might aid reflection and link abstract knowledge with personal experience
 – Why tangibles?
 • Can record aspects of physical activity
 • Novel representational media

Integration of representations

• Taxonomic work highlights degree of integration of physical and digital components
• Little guidance as to potential benefits
• Suggest looking to more general work on external representations
• Highly integrated
 – Cheng (1999) Law encoding diagrams
 • Semantic transparency
 – Integrate levels of representation
 – Combine globally homogeneous with locally heterogeneous representations
 – Integrating perspectives
 • Plastic generativity
 – Malleable meaningful expressions
 – Compact sequences of procedures
 – Uniform procedures
Integration of representations

- Low integration
 - Ainsworth (1999; 2006) multiple representations

Concreteness and sensori-directness

- Physicality and concreteness often conflated (Clements, 1999)
- Discussion of tangibles often emphasises ‘ready-to-hand activity’ (e.g. Dourish; cf. Chalmers (2005))
- For learning, present-at-hand activity important too
 - Practical attention to how to use the interface
 - Theoretical on the structure of the learning domain
- Both abstract and concrete representations can be of benefit
 - Concrete can lead to increased task performance
 - Abstract can result in better learning transfer
- What benefits will come from different combinations of abstract/concrete physical and digital representations?
Effects of physicality

- Physical action can influence cognition and vice versa
- Potential for physical activity to influence learning
- Few empirical tests of effects of physicality (separate from concreteness)
 - Klahr and colleagues: no physicality effect
- Few comparative studies of tangible vs graphical interfaces
 - Fails et al. Hazard room study
 - No differences found
 - Rogers et al. colour mixing study
 - More reflective discussion for novel transforms

Conclusions

- Need for empirical work to test potential benefits
 - We can’t just assume learning benefits of using physical objects
- More investigation of learning domains that go beyond 2D space
 - E.g. texture, malleability
- More focus on learning activities
- Guidance for design of representations
 - High integration (Cheng, 1999)
 - Low integration (Ainsworth, 1999; 2006)
- Concreteness and sensori-directness
 - Separate from physicality
 - More attention to ‘presence-at-hand’ for learning
 - Abstract and concrete representations can both be of benefit
- Effects of physicality
 - Influence on e.g. attitudes, spatial processing
 - Need evidence for effect on learning